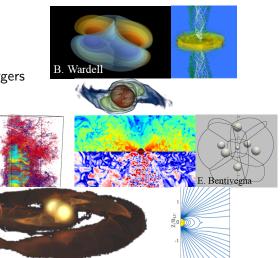
Introduction to the Einstein Toolkit

Roland Haas, Steven R. Brandt, Frank Löffler, Peter Diener, others

National Center for Supercomputing Applications, University of Illinois Urbana-Champaign

June 13, 2022



- Collection of scientific software components and tools to simulate and analyze general relativistic astrophysical systems
- Freely available as open source at http://www.einsteintoolkit.org
- Supported by NSF 1550551/1550461/1550436/1550514, NSF 1212401/1212426/1212433/1212460, NSF 0903973/0903782/0904015 (CIGR), 0701566/0855892 (XiRel), 0721915 (Alpaca), 0905046/0941653(PetaCactus/PRAC)
- State-of-the-art set of tools for numerical relativity, open source
- Currently 356 members from 249 sites and 43 countries
- > 396 publications, > 53 theses building on these components (as of June 2022)
- Regular, tested releases
- User support through various channels

Science

- Binary Black Hole Mergers
- Neutron Star Mergers
- Supernovae
- Accretion Disks
- Boson Stars
- Hairy Black Holes
- Cosmic Censorship

Community Effort!

Why?

More and more diverse hardware

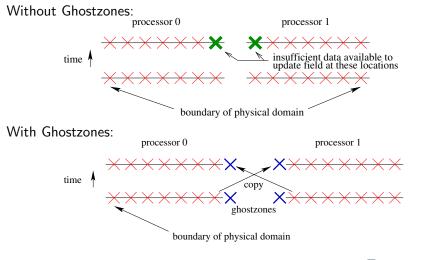
- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache

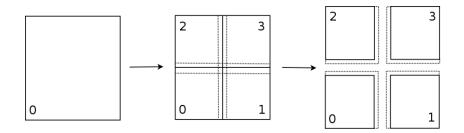
- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache
 - Vector

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache
 - Vector
 - Accelerators

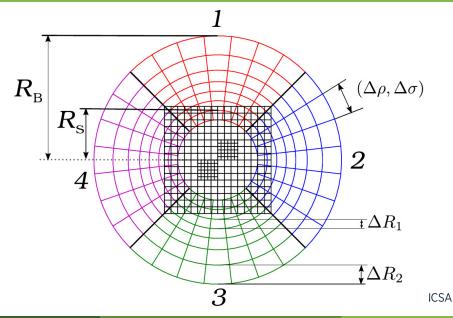
- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache
 - Vector
 - Accelerators
 - Scale to many cores

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache
 - Vector
 - Accelerators
 - Scale to many cores
 - Scale to many nodes


- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Cache
 - Vector
 - Accelerators
 - Scale to many cores
 - Scale to many nodes
 - Algorithms


- Efficient use of all hardware is complex and tedious.
- Requires experts from different disciplines
- Requires good data layouts and APIs
- To ensure correctness, need good modularization on a number of levels and understanding of advanced programming concepts.
- Design and implementation needs to be carefully thought out in order to ensure extensibility and portability.

Domain Decomposition



Domain decomposition

Multiblock and refinement

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)
 - Scale to many cores (OpenMP)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)
 - Machine learning?

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)
 - Scale to many cores (OpenMP)

- Scale to many nodes (MPI, Carpet, CarpetX)
- AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
- GPU (CarpetX)
- Machine learning?
- FPGA?

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)
 - Machine learning?
 - FPGA?
 - ASIC?

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)
 - Machine learning?
 - FPGA?
 - ASIC?
 - Neuromorphic processor?

- Simulate cutting edge science
- Use latest numerical methods
- Make use of latest hardware
 - Vector (Kranc, NRPy+)
 - Scale to many cores (OpenMP)
 - Scale to many nodes (MPI, Carpet, CarpetX)
 - AMR (Adaptive Mesh Refinement, Carpet, CarpetX, MoL)
 - GPU (CarpetX)
 - Machine learning?
 - FPGA?
 - ASIC?
 - Neuromorphic processor?
 - Q-bits?

More Mundane Challenges

• Efficient I/O

- Efficient I/O
- HDF5

- Efficient I/O
- HDF5
- Checkpoint/Restart

- Efficient I/O
- HDF5
- Checkpoint/Restart
- Parameter Parsing

- Efficient I/O
- HDF5
- Checkpoint/Restart
- Parameter Parsing
- Visualization

Computational Challenges

More Mundane Challenges

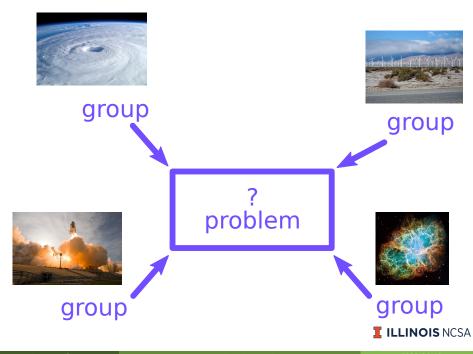
- $\bullet \ \, Efficient \ \, I/O$
- HDF5
- Checkpoint/Restart
- Parameter Parsing
- Visualization
- Analysis

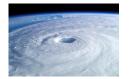
Computational Challenges

More Mundane Challenges

- $\bullet \ \, Efficient \ \, I/O$
- HDF5
- Checkpoint/Restart
- Parameter Parsing
- Visualization
- Analysis
- Steering

Collaborative Challenges


Collaborative Challenges



group

group

group

Group I Illinois NCSA

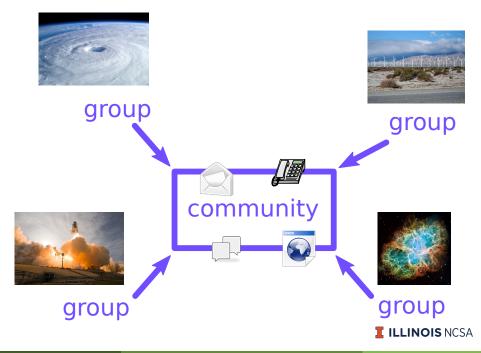
Haas and Others

The Einstein Toolkit

group

group

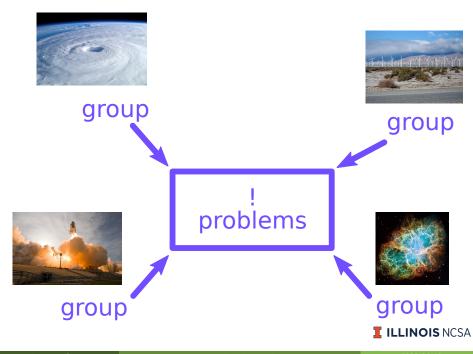
group

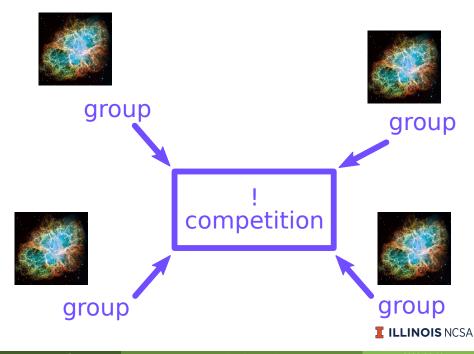

community

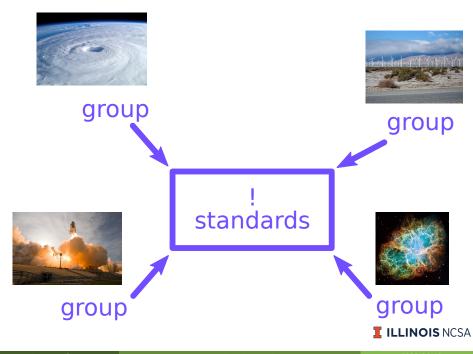
Group

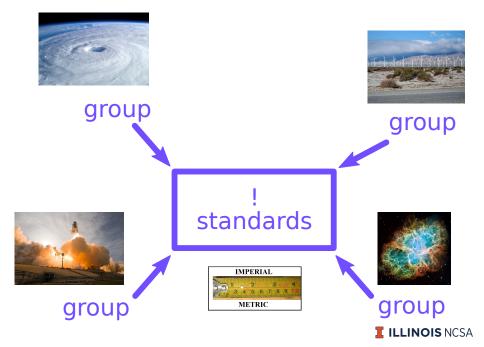
Haas and Others

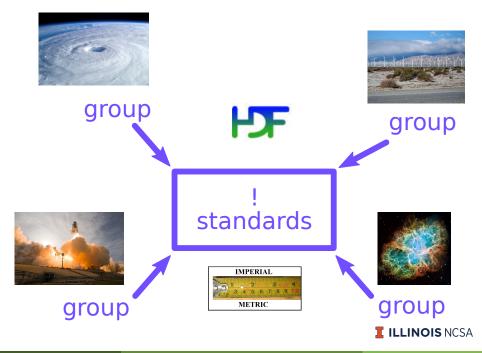
The Einstein Toolkit

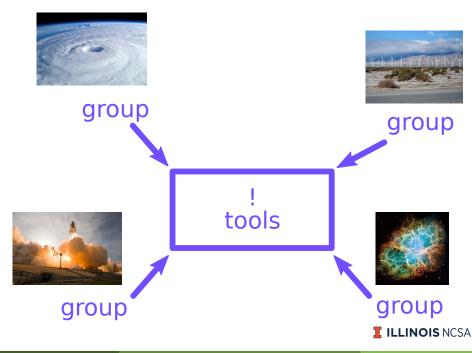


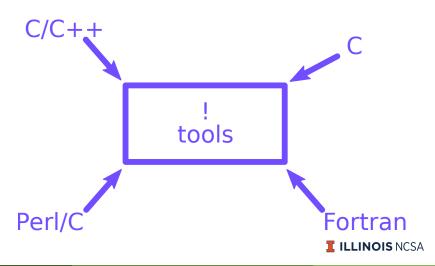


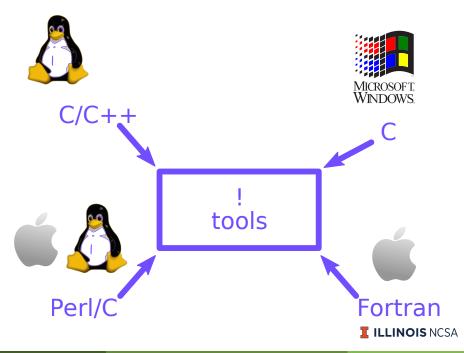


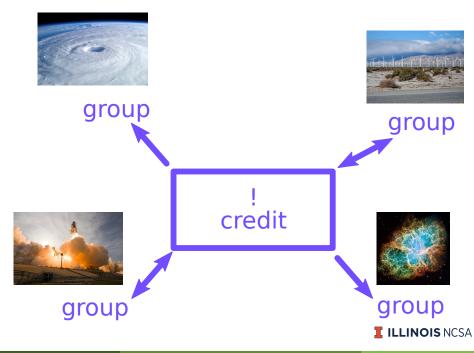


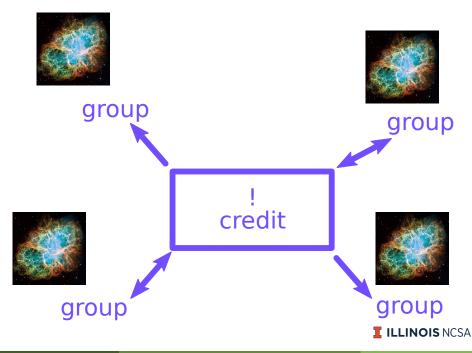







The Einstein Toolkit





The Einstein Toolkit

Collaborative Challenges

How can we work together?

- Researchers in the USA
 - Arizona
 - Florida
 - Georgia
 - Louisiana
 - Illinois
 - Indiana
- In other countries
 - Canada
 - Germany
 - Italy
 - Ireland
 - Mexico
 - Portugal
 - Spain
 - Turkey
 - United Kingdom
 - and many more

DEUTSCHLAND

- New York
- Tenessee
- Texas
- Pennsylvania
- California

ILLINOIS NCSA

The Einstein Toolkit

Goals:

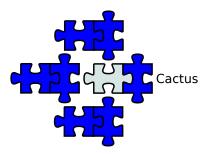
- Community Driven
- Core computational tool for numerical astrophyscis
- General purpose tool!

Components:

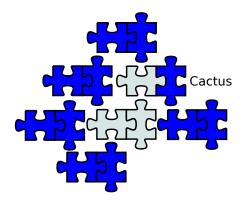
- Cactus
- Simulation Factory
- Kranc
- NRPy+
- Science Modules

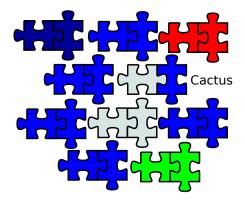
Guiding Principles

- Open
- Community Driven
- Good interfaces
- Separation of physics from computational infrastructure
- Production ready
- High quality code

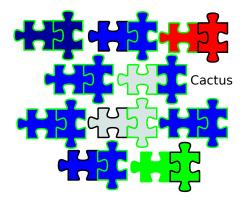

• Initially: some infrastructure, some application code

Haas and Others


• Growing application suite


Haas and Others

• Growing infrastructure "return"

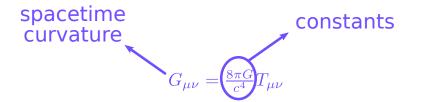


• Users from more fields of science

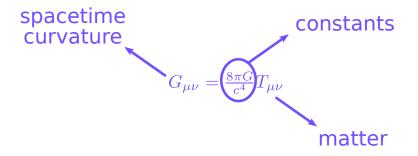
• Most modules open-source, but not necessarily all

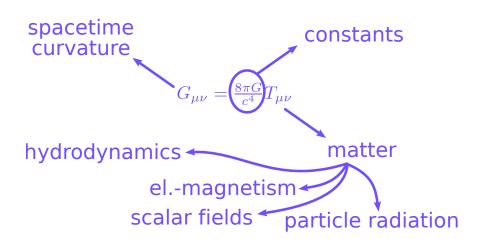
Haas and Others

Base Modules



$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$





$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

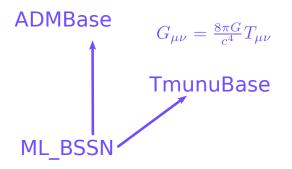
ADMBase

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

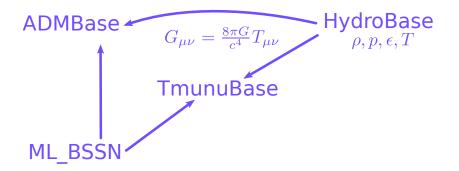
Haas and Others

2022-06-13

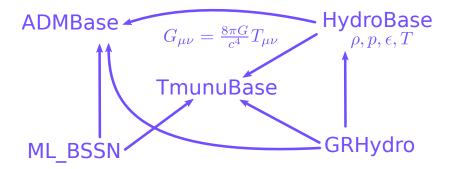
ADMBase

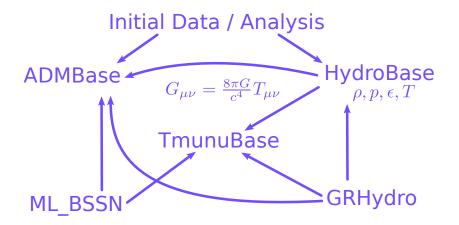

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

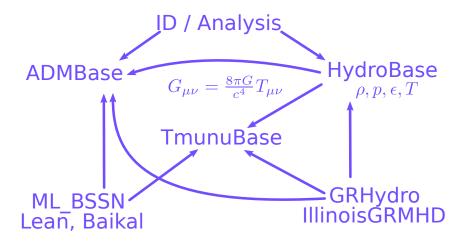
TmunuBase



Haas and Others


2022-06-13





Haas and Others

2022-06-13

- Open, community-driven software development
- Separation of **physics** software and **computational** infrastructure
- Stable interfaces, allowing extensions
- Simplify usage where possible:
 - Doing science >> Running a simulation
 - Students need to know a lot about physics (meaningful initial conditions, numerical stability, accuracy/resolution, have patience, have curiosity, develop a "gut feeling" for what is right ...)

• Einstein Toolkit **cannot** give that, **however**:

Open codes that are easy to use allow to concentrate on these things!

In academics: citations, citations, citations! For Einstein Toolkit:

- Open and free source
- No requirement to cite anything
- However: requested to cite
 - The DOI doi:10.5281/zenodo.3350841
 - Maybe the ET or Cactus papers
 - Some papers for the components list a few as well
 - List published on website and manage through publication database
- Soon: auto-generate list of citations during simulation run

Cutting Edge / Future

- New Driver Thorn: CarpetX
- New Spherical Coordinates Thorn (RIT)

- New Python Code Generator: Full thorn output from NRPy+
- Kerr background support in SelfForce1D

Recent

- PN based initial data and eccentricity reduction
- New Declarative Synchronization: Presync
- Python based simulation analysis: kuibit

Einstein Toolkit

- http://www.einsteintoolkit.org/
- Tools for high-performance computing in numerical relativity
- Open Source
- World-wide, open Community
- Used in high-end research

The Einstein Toolkit is supported by NSF 2004157/2004044/2004311/2004879/2003893, NSF 1550551/1550461/1550436/1550514 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

