11:45 AM - 12:30 PM (45 min)

GRAthena++

Boris Daszuta (Friedrich-Schiller-Universit├Ąt Jena)

Abstract: GR-Athena++ is a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical spacetimes GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. Stable and accurate binary black hole merger evolutions are demonstrated in convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. Strong scaling efficiencies above 95% for up to 1.2├Ś1e4 CPUs and excellent weak scaling up to 1e5 CPUs in a production binary black hole setup with adaptive mesh refinement are measured. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and and offers a viable path towards numerical relativity at exascale.

slides: N/A
recording: watch

Edit on GitHub